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The maximum (or minimum) principle is an important property of linear and nonlinear advection-diffusion 
type problems. It is very desirable to mimic this property in numerical simulations in a wide range of 
applications. Violation of the discrete maximum principle (DMP) leads to non-physical solutions with 
numerical artifacts, such as a heat flow from a cold material to a hot one. These oscillations can be 
significantly amplified by the non-linearity of the physics. Unfortunately, numerical schemes that satisfy 
the DMP impose severe limitations on mesh geometry and problem coefficients. We developed a new 
nonlinear finite volume method that guarantees the DMP for numerical solutions on general polygonal 
meshes for diffusion-advection problems with anisotropic coefficients.

The diffusion-type problem can be written in the divergence form as 
follows:

		  div q=ƒ	 and	 q= – c + vc

where (x) is a symmetric positive definite continuous (possibly 
anisotropic) diffusion tensor, v is a velocity, ƒ is a source term and c(x) 
is an unknown scalar function, for example concentration. The vector 
function q(x) is an unknown concentration flux. The first equation 
represents the mass conservation law. The second is the constitutive 
equation that establishes connection between scalar and vector 
unknowns. In subsurface modeling, this law is referred to as Darcy’s 
law–similar laws go by different names in other areas. An appropriate 
boundary condition should be imposed to make the problem well posed.

State-of-art second order discretization schemes, such as the Mixed 
Finite Element (MFE) method, Mimetic Finite Difference (MFD) method, 
and Multi-Point Flux Approximation (MPFA) method, fail to provide 
a solution that satisfies the discrete maximum principle or even to 
preserve positivity of a numerical solution when the diffusion tensor is 
heterogeneous and anisotropic or the computational mesh is strongly 
perturbed.

The finite volume framework has several obvious advantages. It operates 
with cell-centered degrees of freedom (minimum number of unknowns) 
and provides the local mass conservation by construction because the 
equation is discretized in the mixed form. The classical linear two-point 
(FV) scheme defines a flux across a mesh edge as the difference between 
two concentrations at neighboring cells multiplied by a transmissibility 
coefficient. It results in a linear system of equations with a matrix that 
has special properties (M-matrix with diagonal dominance in rows). This 
immediately implies the discrete maximum principle. These properties 
along with the minimal discretization stencil (number of non-zero entries 

in each matrix row) make this approach very popular in many modeling 
tools and legacy codes. However, the accuracy of this scheme depends on 
the mesh geometry, mutual orientation of the mesh edges, and principal 
directions of the diffusion tensor. More precisely, to provide minimal 
order of accuracy the principal directions have to be orthogonal to the 
mesh edges, which is clearly an impossible requirement for arbitrary 
tensors and/or arbitrary polygonal cells. The MPFA scheme solves the 
accuracy problem by using more than two points in the flux stencil and 
a matrix of transmissibility coefficients. This makes the discretization 
stencil larger. The MPFA scheme provides a second-order accurate 
approximation, but is often only conditionally stable and conditionally 
monotone.

To incorporate the monotonicity requirement into the finite volume 
framework, we use the ideas propsed by E. Bertolazzi, [1] along with the 
fact that coefficients in flux discretization depend on the unknowns in 
neighboring cells even for liinear diffusion-advection problems. Several 
approaches based on this idea have been proposed recently, but all of 
them guarantee only positivity preservation of a numerical solution 
on general meshes for general tensor coefficients. To guarantee the 
DMP, a nonlinear multi-point approximation of the flux is essential. 
For diffusion problems, a new method was proposed that uses multi-
point approximation of the flux along with interpolation techniques and 
auxiliary unknowns at the mesh vertices [3]. The use of interpolation 
techniques and auxiliary unknowns increases the stencil and makes it 
difficult to incorporate this approach into existing modeling tools. In 
our research, we propose an interpolation-free multi-point nonlinear 
approximation of diffusive fluxes. The proposed scheme has the minimal 
stencil and reduces to the classical two-point FV scheme on Voronoi 
or rectangular meshes for scalar (and, in a few cases, diagonal tensor) 
coefficients.
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The resulting nonlinear algebraic system is sparse, but 
non-symmetric. For quadrilateral meshes there are at most 
four non-zero elements in each row. We elaborated on this 
system and proved, theoretically as well as demonstrating in 
the numerical tests (see Fig. 1), that the numerical solution 
satisfies the DMP principle. Moreover, if the nonlinear 
system is solved using the Picard iterative method then the 
proposed method guarantees that the DMP is satisfied on 
all iterative steps. It means that for any tolerance of the 
iterative method we obtain a monotone solution. The proof 
is based on the special properties of M-matrices.

The numerical experiments presented in [2] also study this 
approach for advection-diffusion problems and demonstrate 
its monotone properties and accuracy. The method can 
be applied on unstructured polygonal meshes and full 
anisotropic heterogeneous diffusion tensors. The second-
order convergence is observed for scalar unknowns Ch. For 
numerical approximation qh, of the normal components of 
the flux q the convergence rate, is higher than the first 
order.
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Fig. 1. (Top): Profile of numerical 
solution C-

h(x,y) on the distorted 
quadrilateral mesh, -1 ≤ Ch(x,y,) ≤1.                     
(Bottom): Computational domain for 
the anisotropic diffusion problem: The 
unit square with the hole in the center. 
The problem becomes the diffusion 
equation with highly anisotropic 
tensor. Ratio of tensor’s eigenvalues 
is 103. Tensor is rotated with respect 
to coordinate axes on 60° clockwise. 
Ch=1 on the hole, Ch= –1 on the 
boundary of unit square. Analytical 
solution satisfies maximum principle, 
-1 ≤ c(x,y,) ≤1.


